
Journal of Applied Mechanics and Technical Physics, Vol. 48, No. 5, pp. 629–632, 2007

SOME TYPES OF KINETIC EQUATIONS

REDUCIBLE TO PARTIAL DIFFERENTIAL EQUATIONS

UDC 539.1S. O. Gladkov and I. G. Tabakova

The possibility of passing from the kinetic equation to a partial differential equations is rigorously
mathematically proved for the case of nearly elastic scattering processes. Some examples are consid-
ered.
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The Boltzmann integrodifferential kinetic equation describing the spatial–temporal dynamics of the distribu-
tion function appears in modeling nonequilibrium phenomena in solids [1, 2]. The corresponding kinetic processes
have been well studied; nevertheless, there is one issue that has not been considered earlier (see below) and it is
studied in the present paper.

We consider a scattering process that involves two fast particles and one slow particle, in particular: 1) two
photons and one phonon; 2) two electrons and one phonon; 3) two photons and one nonrelativistic electron (moving,
for example, on a Fermi surface), etc. A common feature of the large number of such processes is that all of them
are quasi-elastic ones.

Let us consider a process of the first type. Because the phase velocity of light in matter v = c/
√
εμ (ε and

μ are the dielectric and magnetic permeabilities, respectively) considerably exceeds the sound velocity cs, it can be
assumed that, in the energy conservation law v(k1 − k2) − csk3 = 0, the last term csk3 is always small and, hence,
k1 ≈ k2 (k1 and k2 are the photon wave vectors before and after scattering, respectively, and k3 is the phonon wave
vector). The same is valid for processes of the second and third types.

The question arises: What for should the nonlocal and evolution concentrations of photons and electrons be
introduced into consideration? According to the definition of the extinction (attenuation) coefficient given in [3], it
can be written as

h =
〈δε2〉
18πc

V q4,

where V is the volume of the macroparticle on which there is scattering of a photon of wavelength λ = 2π/q � V 1/3,
〈δε2〉 are the dielectric permeability fluctuations due to the incidence of the electromagnetic wave on the body, and
q is the wave vector of the incident photon. Since the fluctuation can be represented as

δε =
∂ε

∂ρ
δρ,

where δρ is the density fluctuation, we obtain

h = 〈δρ2〉
(∂ε
∂ρ

)2

q4V.
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However,

〈δρ2〉 =
( ∂ρ
∂V

)2

〈δV 2〉 =
M2

V 2CV
=

ρ2

CV

(CV is the isochoric heat capacity and M is the mass); therefore,

h ∼ M2

V CV

(∂ε
∂ρ

)2

q4.

Because the photon concentration is defined as n = 1/V , the extinction coefficient

h ∼ n
M2

CV

(∂ε
∂ρ

)2

q4,

and, hence, it depends greatly on the photon concentration.
In the above definition, the concentration n is a stationary homogeneous function of the coordinates and

time, but its distribution n(r, t) should be determined from the diffusion approximation, which is discussed in the
present work.

For electrons, the conductivity is defined [4] as σ = e2nτ/m (e is the electron charge, m is its mass, τ is the
relaxation time, and n is the electron concentration); therefore, all inferences on the homogeneity and stationarity
of the function n(r, t) are the same as for photons.

Thus, if the diffusion time in the r-space is Δt = L2/D (L ∼ V 1/3 is the characteristic size and D is
the diffusion coefficient), which is much larger than the electron diffusion time in the momentum p-space (Δt∗ =
p2
F/Dp = (pF/δp)2τ ∼ p2

Fτ/(mT ), where pF is the Fermi momentum, T is the temperature, and the Boltzmann
constant is set equal to unity), the establishment of the equilibrium electron concentration is determined by the
time Δt = L2/D. If the experiment is terminated before this time, the electrons are a nonequilibrium system, and,
hence, any experimental measurements of metal conductivity can be called into question. The same is true for the
extinction coefficient h.

Let us show that in the approximation of quasi-elastic particle scattering (quasi-particles), the right side of
the Boltzmann kinetic equation for the distribution function f(r,p, t): ḟ = L{f} (L{f} is the collision integral),
after being integrated over all momenta p can always be represented as

∫
L{f} d3p

(2π�)3
= D1 Δn−D2 Δ2n+D3 Δ3n− . . . =

k∑
i=1

(−1)i+1Di Δin, (1)

where Δ is the Laplace operator,Di are the diffusion coefficients of the corresponding dimension (D1 = D3 = . . . = 0
and D2 �= 0 for photons, and D1 �= 0 and D2 = D3 = . . . = 0 for electrons), and � is Planck’s constant.

The left side of the Boltzmann kinetic equation becomes

∂n

∂t
=

∫
∂f

∂t

d3p

(2π�)3
.

Let us prove formula (1). We write the photon–phonon collision integral as

L{f} =
2πV 3

�(2π�)3

∫
d3p′

∫
|ψ1|2{[(1 + fp)fp′N̄k − fp(1 + fp′)(1 + N̄k)]δ(εp − εp′ − �ωk)δ(q − q′ − k)

+ [(1 + fp)fp′(1 + N̄k) − fp(1 + fp′)N̄k]δ(εp − εp′ + �ωk)δ(q − q′ + k)} d3k, (2)

where N̄k is the equilibrium distribution function for phonons, which are considered a thermostat and δ are delta-
functions that take into account the conservation laws for the energy and momentum of the particles (quasi-particles)
participating in the scattering processes. The remaining notation is the same as in [2].

As is known, the scattering amplitude for the photon–phonon mechanism is given by the formula

ψ1 = i
8π�g

V

(
�kωqωq′

2ρV cs

)1/2

, (3)

where ωq = cq/
√
εμ is the photon oscillation frequency and g is the photon–phonon interaction constant [5].

Because the ambient temperature is considered fairly high: T � �ωk, it can be assumed that 1+Nk ≈ Nk ≈
T/(�ωk). Then, the nonlinear collision integral (2) becomes linear in the photon distribution function:
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L{f} =
(2π)2V 3T

�2(2π�)3

∫
d3p′

∫
|ψ1|2{(fp′ − fp)[δ(εp − εp′ − �ωk)δ(q − q′ − k)

+ δ(εp − εp′ + �ωk)δ(q − q′ + k)]} d
3k

ωk
. (4)

Since p′ = p+ δp, where δp = �k and δp	 p, in (4), according to (3), we can set

|ψ1|2 = g2 (8π)2

2
�

3qq′kc2

V 3csεμ
≈ 32π2g2 �

3q2kc2

V 3csεμ
. (5)

We integrate the collision integral (4) over all q. After transformation to spherical coordinates with allowance
for (5), we have

∫
L{fp} d3p

(2π�)3
=

∫
L{fq} q

2 dq

(2π)3
4π. (6)

We expand the photon distribution function in a Fourier integral using the well-known representation

fq =
∫
fx eiqx d3x.

Because expression (6) is linear in fq, it follows that
∫
q4 dq( · ) eiqx d3x = −Δ2

∫
dq d3x( · ) eiqR, (7)

where R = x − r and the differentiation is performed over R.
After simple mathematical calculations, we obtain the following diffusion equation for the photon concen-

tration n(r, t):

∂n

∂t
= −D2 Δ2n. (8)

It can be shown that the diffusion coefficient is given by the relation

D2 = 1024π3Tcg2ξ/(ρc2sεμ), (9)

where

ξ =

1∫

−1

dx

1∫

−1

dy

[
x2y2 + (1 − x2)(1 − y2)

|x|
( 1√

4(1 − x2)(1 − y2) − 1
− 1

4
√

1 − x2 − y2 + xy
− 1

4
√

1 − x2 − y2 + xy

)

+
1

4|x|
(√

4(1 − x2)(1 − y2) − 1 −
√

1 − x2 − y2 + xy −
√

1 − x2 − y2 − xy
)]
. (10)

The principal Cauchy value of integral (10) is approximately 6.34.
Equation (8) can be solved by setting concrete boundary and initial conditions. Indeed, at the initial time,

let the photon concentration be equal to n(r, t)
∣∣∣
t=0

= ϕ(r). The function ϕ(r) can be measured, for example,
by gauges inserted into the structure at some distance from the boundary and spaced from each other at certain
intervals in the direction of the Pointing vector. This allows one to determine the spatial behavior of n(r, 0). The
second condition can be obtained by measuring the rate of decrease in the concentration or, more precisely, its
derivative:

∂n(r, t)
∂t

∣∣∣
t=0

= ψ(r).

As regards the boundary conditions, the concentration value on the surface of the structure can be specified,
for example, in the form n(r, t)

∣∣∣
ΣV

= n0(t), where ΣV is the boundary of the solid scatterer. Since the concentration

can be a decreasing function, one more boundary condition can be specified by requiring that the concentration
n(r, t) also decrease with increasing distance d into the depth of the material. This condition can be supplemented
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by the requirement of a negative derivative of the function n(r, t) in the direction perpendicular to the boundary
of the solid. In addition, the concentration gradient should be oriented strictly along the Pointing vector.

It should be noted that the boundary (and initial) conditions should be specified on the basis of a particular
experiment.

Generally, it can only be stated that for the initial concentration distribution there are two possibilities:
a reduction in the concentration with increasing depth (i.e., for r → ∞) or a weak dependence on the distance
n(r, t). The weak dependence n(r, t) follows from the solution of Eq. (8) and is easily checked in the one-dimensional
case for the radial concentration distribution.

The aforesaid refers to the case of nearly elastic scattering of photons by phonons.
Let us consider nearly elastic scattering of conductivity electrons in a metal by density fluctuations. In this

case,
ψ2 = −ig

(
�k

2ρV cs

)1/2 1
V

(11)

and, similarly to (4) (considering phonons a thermostat), we have

L{f} =
(2π)2V 3T

�2(2π�)3

∫
d3p′

∫
|ψ2|2{(fp′ − fp)[δ(εp − εp′ − �ωk)δ(q − q′ − k) + δ(εp − εp′ + �ωk)δ(q − q′ + k)]} d

3k

ωk
.

The expression for the scattering amplitude (11) does not include the multiplier qq′ ≈ q2; therefore, by analogy
with (7)–(10), we obtain the equation

∂n

∂t
= D1 Δn,

where D1 is the electron diffusion coefficient:
D1 ≈ 512π3TvFg

2/(ρc2sa
2) (12)

(a is the interatomic distance).
The difficulty in estimating by formula (12) is due to arbitrariness in the definition of the electron–phonon

interaction constant g. However, for the estimates, it is sufficient to set, for example, g = 10−4.
For room temperature (density ρ = 7.8 g/cm3, Fermi velocity vF = 108 cm/sec, sound velocity cs =

105 cm/sec, interatomic distance a = 3 · 10−8 cm) from (12) we obtain the electron diffusion coefficient in the
coordinate space D ≈ 10−6 cm2/sec. Therefore, the diffusion time (assuming that the process proceeds in the
interval L = 10−6 cm) is δt = L2/D1 ≈ 10−6 sec. Since the electron relaxation time τ is much smaller than δt, the
above numerical estimate is fairly accurate.

Thus, formula (1) can be considered proved.
Thus, it was shown that in the approximation of nearly elastic scattering of particles or quasi-particles, the

integrodifferential kinetic equation always reduces to the diffusion equation, whose right side contains the operator
Δm (m = 1, 2, 3, . . . ).

Depending on the type of particles participating in the scattering process, the particle differential equation
changes significantly: its right side contains the term D1 Δn or the term −D2 Δ2n, D3 Δ3n, . . . (see examples of
solution of similar problems in [5]).

Solution of the diffusion equation (8) subject to the corresponding initial and boundary conditions allows
one to describe the nontrivial spatial–temporal distribution of the photon concentration over the volume of the
material.
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